In the race to meet sustainability goals worldwide, renewable energy industries are flourishing. One of these is solar power, which, according to European solar industry association Solar Power Europe, will account for 20% of Europe’s electricity demand by 20301. This is partly due to production costs for solar power falling dramatically, by 90% between 2009 and 20202. In order to meet this growing need, solar power providers are turning to smart technologies to streamline their operations.
Solar power farms
Solar power farms have popped up all over the world, using solar panels to generate electricity. These panels collect radiation emitted from the sun to energize photovoltaic cells, creating an electrical current. This is fed into a series of sub-stations to convert and distribute the energy to where it’s needed. Since the sun is a constant supply of radiation - it’s a renewable energy source.
These farms can get really big, depending on the amount of land available. One farm in Spain, for example, uses more than 4 million panels over 10 square kilometers. At the time it was built (2019), it was the largest in Europe, but the speed of development in the industry quickly changed that. Because so much space is needed, the farms tend to be in more remote locations.
Of course, remote sites like this need securing, and perimeter security measures provide the ability to monitor remotely. However, video technology is also being used for another purpose – to streamline maintenance.
The risk of hot spots
Routine solar panel inspections are an essential part of operational efficiency. Damage to the glass on the solar panel is sometimes caused by strong wind, hail, or equipment structure distortion. Damaged glass leads to further problems - such as water infiltration and photovoltaic film decomposition. These are all issues that can lead to temperature differentiation.
This is a problem for a panel’s efficiency. The temperature distribution of each cell should be uniform for it to provide a stable output. An abnormally high temperature in an individual cell in the component matrix indicates an issue. If this is not corrected quickly, the cell energy production decreases. When working temperature increases 1ºC, energy production goes down by 1.1W3. This loss accumulates across other ‘malfunctioning’ panels, leading to an overall reduction in the solar farm’s output. In fact, according to research, a single ‘hot spot’ could influence the circuit to a 3-7% loss.