Furthermore, high performance hardware platforms enable higher computational power. The deep learning model requires a large amount of samples, making a large amount of calculations inevitable. In the past, hardware devices were incapable of processing complex deep learning models with over a hundred layers. In 2011, Google’s DeepMind used 1,000 devices with 16,000 CPUs to simulate a neural network with approximately 1 billion neurons. Today, only a few GPUs are required to achieve the same sort of computational power with even faster iteration. The rapid development of GPUs, supercomputers, cloud computing, and other high performance hardware platforms has allowed deep learning to become possible.
Finally, the network architecture plays its own role in advancing deep learning. Through constant optimization of deep learning algorithms, better target-object recognition can be achieved. For more complex applications such as facial recognition or in scenarios with different lighting, angles, postures, expressions, accessories, resolutions, etc., network architecture will impact the accuracy of recognition, i.e., the more layers in deep learning algorithms, the better the performance.
In 2016, Hikvision achieved the number one position in the Scene Classification category at the ImageNet Large Scale Visual Recognition Challenge 2016. The team from Hikvision Research Institute used inception-style networks and not-so-deep residual networks that perform better in considerably less training time, according to Hikvision’s experiments for training and testing. Furthermore, Hikvision’s Optical Character Recognition (OCR) Technology, based on Deep Learning and led by the company’s Research Institute, also won the first price in the ICDAR 2016 Robust Reading Competition. The Hikvision team substantially surpassed both strong domestic and foreign competitors in three word-recognition challenges, including born-digital images, focused scene text, and incidental scene text, demonstrating that the word recognition technology by Hikvision reached the world’s top level.
Application of Deep Learning Products
In the past two years, deep learning technology has excelled in speech recognition, computer vision, voice translation, and much more. It has even surpassed human capabilities in the areas of facial verification and image classification; hence, it has been highly regarded in the field of video surveillance for the security industry.
In the application of intelligent video in target detection, tracking, and recognition, the rise of deep learning has had a profound influence. When applying those three functions, deep learning potentially touches upon every aspect of the security video surveillance industry: facial detection, vehicle detection, non-motor vehicle detection, facial recognition, vehicle brand recognition, pedestrian detection, human body feature detection, abnormal facial detection, multiple target tracking, and so on.
These types of intelligent functions require a series of front-end surveillance cameras, back-end servers and other products which support deep learning algorithms. In small scale applications, front-end cameras can directly operate structured human and vehicle feature extraction, and tens of thousands of human facial images can be stored within the front-end devices to implement direct facial comparison, so as to reduce costs of communicating with a server. In large scale applications, front-end cameras can work with back-end servers. Specifically, the structured video task is handled by front-end devices, reducing the workload for back-end devices; matching and searching efficiency of back-end servers improve as well.
This year, Hikvision will soon introduce a series of products with deep learning technology, such as the DeepInview Series cameras which can accurately detect, recognize, and analyze human, vehicle, and object features and behavior, and can be widely used in indoor and outdoor scenarios. Another of products worth mentioning is Hikvision’s DeepInmind Series of NVRs which incorporate advanced deep learning algorithms and imitate human thoughts and memory. The DeepInmind products feature an innovative NVR+GPU mode, retaining the advantages of traditional NVRs and additional structured video analysis functions, which together greatly improve the value of video.
Deep learning is the next level of AI development. It is beyond machine learning where supervised classification of features and patterns are set into algorithms. Deep learning incorporates unsupervised or “self-learning” principles. Hikvision is developing this concept in its own analytics algorithms. Enhanced accuracy is the result of multi-layer learning. Application of this algorithm into face recognition, vehicle recognition, human recognition, and other platforms will significantly advance the performance of analytics.