The DS-K4H250S Single-door magnetic lock is designed for wooden door, glass door, and steel door with the opening angle of 90°. The maximum thrust of the lock is 300kg. It can be used for controlling door opening/closing, and the indicator shows the door status. It supports signal output of door lock output status testing.

AVAILABLE MODEL

DS-K4H250S

MAIN FEATURES

- The magnetic lock supports static linear thrust of 300kg;
- The power supply can be customized to be 12VDC or 24VDC, and the default voltage is 12VDC;
- It is equipped with internal voltage dependent resistor (MOV);
- It is applied to wooden door, glass door, metal door and fireproof door;
- LED indicator displays the status of door lock;
- Signal output of door lock status (NO\NC\COM);
- Anti-residual magnetism design;
- Abrasion-proof materials;
- The shell is made up of aldural and is hard anodizing electroplated;
- No mechanical failure, and the magnetic lock works by electromagnetism force;

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>DS-K4H250S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension of Lock Body (L×W×H)</td>
<td>240×49×25.5mm (9.45×1.93×1.00")</td>
</tr>
<tr>
<td>Dimension of Armature Plate (L×W×H)</td>
<td>180×38×11mm (7.1×1.5×0.4")</td>
</tr>
<tr>
<td>Maximum Thrust</td>
<td>300kg Linear Thrust</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>DC12V/DC24V</td>
</tr>
<tr>
<td>Model</td>
<td>DS-K4H250S</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Working Current</td>
<td>12V/500mA</td>
</tr>
<tr>
<td></td>
<td>24V/250mA</td>
</tr>
<tr>
<td>Signal Output</td>
<td>Dry Contact Signal Output, Support Maximum Power Rate of 3A, NO Output While Locking and NC Output While Unlocking</td>
</tr>
<tr>
<td>LED Indicator</td>
<td>Red (Door is Unlocked) Green (Door is Locked)</td>
</tr>
<tr>
<td>Suitable Door</td>
<td>Wooden Door, Glass Door, Metal Door, Fireproof Door</td>
</tr>
<tr>
<td>Working Temperature</td>
<td>-10°C to +55°C (14°F to 131°F)</td>
</tr>
<tr>
<td>Working Humidity</td>
<td>0 to 95% (Relative Humidity)</td>
</tr>
<tr>
<td>Shell</td>
<td>Hard Anodizing Electroplating Operated</td>
</tr>
<tr>
<td>Lock Body</td>
<td>Eco-friendly Zinc with Electroplating Operated</td>
</tr>
<tr>
<td>Armature Plate</td>
<td>Eco-friendly Zinc with Electroplating Operated</td>
</tr>
<tr>
<td>Weight</td>
<td>2.1kg(4.63lb)</td>
</tr>
</tbody>
</table>

Circuit Board Diagram

Lock status sensor

1. Normally open switch: NO and COM
2. Normally closed switch: NC and COM

Power selector

- Jumper
 - 12VDC
 - 24VDC
Installation

1. **Template**
 - Fold the plate to 90°.

2. **Door Frame**
 - Close the door first, then place the upper side of template on door frame, while adjust the left side next to the door leaf.

3. **Door leaf**
 - Mark screw positions of armature plate and magnetic lock on door leaf and door frame respectively.

4. **Steps**
 - Drill holes based on the marked positions.

5. **Make a combination based on the picture.**
 - Hollow Metal Door
 - Wooden Door
 - Metal Surface Door
 - Drill a hole
 - Inside: Diameter is 8mm
 - Outside: Diameter is 16mm
 - Drill a hole
 - Inside: Diameter is 8mm
 - Outside: Diameter is 12.7mm
 - Inside: Drill a hole
 - Diameter is 8mm folding the plastic straight pin

6. **Strike the pin into the armature plate slightly (to avoid movement).**

7. **Make a combination based on the picture (add washer accordingly). The rubber ring must be added.**

8. **Place the rubber ring between armature plate and door leaf.**

9. **Use Allen key to remove the mounting plate from lock body.**

10. **Fix the mounting plate on the door frame according to the holes drilled earlier.**

11. **Use Allen key to screw the lock body on the mounting plate.**

12. **Close the door to test holding force. The angle between armature plate and magnetic lock can be adjusted by adding or reducing washers.**

13. **After all the appropriate procedures, the holding force can be maximized. Finally, fix the tamper screw.**